31 research outputs found

    Metabolism of Styrene by Rhodococcus rhodochrous

    Get PDF
    1. Eight strains of bacteria able to grow on styrene as a sole source of carbon and energy had been isolated prior to this project. The aim of the project was to discover the pathway for the metabolism of styrene in one of these strains, preferably a novel pathway. 2. Initial characterisation of these eight strains using growth experiments and simultaneous induction led to the selection of three strains for further work, and they were tentatively identified as coryneform bacteria. Simultaneous induction tests on one strain, a possible Rhodococcus sp., suggested that styrene was probably metabolised through phenylacetic acid, a well-established pathway for styrene degradation. The results from another of the three strains were not clear cut. The third strain was clearly using a novel pathway, and so it was selected for further study. 3. The organism which was selected for most of the work described in this thesis, strain 26, was identified as Rhodococcus rhodochrous. A method was developed to grow this strain in a fermenter containing a minimal salts medium, with styrene vapour supplied in the air supply. For larger quantities of cells, a nutrient broth medium was used, with styrene supplied as vapour in order to induce the enzymes involved in styrene degradation. 4. R. rhodochrous 26 is able to grow on styrene, toluene, ethylbenzene and 1-phenylethanol. Simultaneous induction experiments showed that growth on each of these substrates resulted in the ability to oxidise all of the others. 5. Oxidative responses to possible intermediates in known pathways of toluene metabolism showed high activities with toluene cis-glycol and 3-methylcatechol, with lower activities towards other possible substrates. This led to the proposition that a similar pathway was being used for styrene metabolism. 6. Styrene cw-glycol was produced by Pseudomonas putida from styrene, and identified by and n.m.r.. This substrate was oxidised by extracts of R. rhodochrous 26 which had been grown on styrene, in an NAD-dependent reaction. There was also an NAD-dependent oxidation of toluene cw-glycol. Ion exchange chromatography of extracts, coupled with a heat denaturation test, strongly indicated that both toluene c/5-glycol and styrene cz5-glycol were oxidised by the same enzyme. 7. Under anaerobic conditions, in the presence of NAD, extracts transformed styrene cz5-glycol into a compound identified by g.c.-m.s. as vinylcatechol. Toluene cis- glycol was transformed to methylcatechol by the same system. 8. Intact cells incubated with styrene and 3-fluorocatechol (as an inhibitor of catechol oxygenase activity), accumulated a compound identified by g.c.-m.s. and n.m.r. as 3-vinylcatechol. 2-Fluoromuconic acid, identified by and n.m.r., also accumulated under these conditions. 9. When intact cells were incubated with styrene and 3-fluorocatechol in an atmosphere of 50% 18O2 and 50% 18O2, g.c.-m.s. analysis demonstrated the presence of two molecular ions for vinylcatechol, M and M-i-4, showing that initial ring attack is due to a dioxygenase. 10. When grown on styrene, R. rhodochrous 26 accumulated a compound identified by and n.m.r. as 2-vinylmuconic acid. Up to 40% of the styrene substrate may be converted to this product. There was no sign of further metabolism of this product in either growth medium or cell extracts. A similar accumulation of muconic acid was noticed when R. rhodochrous 26 was grown on benzyl alcohol. Cell extracts did not seem to metabolise cis, cis-muconic acid, the expected product of benzyl alcohol breakdown through an ortho cleavage pathway. 11. It was not possible to detect any styrene dioxygenase activity in extracts using an oxygen electrode or spectrophotometric methods. 12. Extracts of R. rhodochrous 26 which had been grown on styrene contained catechol 1,2-oxygenase and catechol 2,3-oxygenase activities. The two enzymes were clearly separated by ion exchange chromatography, each appearing as a single peak. Both enzymes could oxidise catechol, 3-methylcatechol, 4-methylcatechol and vinylcatechol. (Abstract shortened by ProQuest.)

    Oral activated charcoal prevents experimental cerebral malaria in mice and in a randomized controlled clinical trial in man did not interfere with the pharmacokinetics of parenteral artesunate.

    Get PDF
    BACKGROUND: Safe, cheap and effective adjunct therapies preventing the development of, or reducing the mortality from, severe malaria could have considerable and rapid public health impact. Oral activated charcoal (oAC) is a safe and well tolerated treatment for acute poisoning, more recently shown to have significant immunomodulatory effects in man. In preparation for possible efficacy trials in human malaria, we sought to determine whether oAC would i) reduce mortality due to experimental cerebral malaria (ECM) in mice, ii) modulate immune and inflammatory responses associated with ECM, and iii) affect the pharmacokinetics of parenteral artesunate in human volunteers. METHODS/PRINCIPAL FINDINGS: We found that oAC provided significant protection against P. berghei ANKA-induced ECM, increasing overall survival time compared to untreated mice (p<0.0001; hazard ratio 16.4; 95% CI 6.73 to 40.1). Protection from ECM by oAC was associated with reduced numbers of splenic TNF(+) CD4(+) T cells and multifunctional IFNgamma(+)TNF(+) CD4(+) and CD8(+) T cells. Furthermore, we identified a whole blood gene expression signature (68 genes) associated with protection from ECM. To evaluate whether oAC might affect current best available anti-malarial treatment, we conducted a randomized controlled open label trial in 52 human volunteers (ISRCTN NR. 64793756), administering artesunate (AS) in the presence or absence of oAC. We demonstrated that co-administration of oAC was safe and well-tolerated. In the 26 subjects further analyzed, we found no interference with the pharmacokinetics of parenteral AS or its pharmacologically active metabolite dihydroartemisinin. CONCLUSIONS/SIGNIFICANCE: oAC protects against ECM in mice, and does not interfere with the pharmacokinetics of parenteral artesunate. If future studies succeed in establishing the efficacy of oAC in human malaria, then the characteristics of being inexpensive, well-tolerated at high doses and requiring no sophisticated storage would make oAC a relevant candidate for adjunct therapy to reduce mortality from severe malaria, or for immediate treatment of suspected severe malaria in a rural setting. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN64793756

    Rapid increase of Plasmodium falciparum dhfr/dhps resistant haplotypes, after the adoption of sulphadoxine-pyrimethamine as first line treatment in 2002, in southern Mozambique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In late 2002, the health authorities of Mozambique implemented sulphadoxine-pyrimethamine (SP)/amodiaquine (AQ) as first-line treatment against uncomplicated falciparum malaria. In 2004, this has been altered to SP/artesunate in line with WHO recommendations of using Artemisinin Combination Therapies (ACTs), despite the fact that all the neighbouring countries have abandoned SP-drug combinations due to high levels of SP drug resistance. In the study area, one year prior to the change to SP/AQ, SP alone was used to treat uncomplicated malaria cases. The study described here investigated the immediate impact of the change to SP on the frequency of SP and CQ resistance-related haplotypes in the <it>Plasmodium falciparum </it>genes <it>Pfdhfr, Pfdhps </it>and <it>Pfcrt </it>before and a year after the introduction of SP.</p> <p>Methods</p> <p>Samples were collected during two cross sectional surveys in early 2002 and 2003 involving 796 and 692 children one year or older and adults randomly selected living in Maciana, an area located in Manhiça district, Southern Mozambique. Out of these, 171 and 173 <it>P. falciparum </it>positive samples were randomly selected to measure the frequency of resistance- related haplotypes in <it>Pfdhfr, Pfdhps </it>and <it>Pfcrt </it>based on results obtained by nested PCR followed by sequence-specific oligonucleotide probe (SSOP)-ELISA.</p> <p>Results</p> <p>The frequency of the SP-resistance associated <it>Pfdhps </it>double mutant (SGEAA) haplotype increased significantly from 14% to 35% (P < 0.001), while the triple mutant <it>Pfdhfr </it>haplotype (CIRNI) remained high and only changed marginally from 46% to 53% (P = 0.405) after one year with SP as first-line treatment in the study area. Conversely, the combined <it>Pfdhfr/Pfdhps </it>quintuple mutant haplotype increased from 8% to 26% (P = 0.005). The frequency of the chloroquine resistance associated <it>Pfcrt</it>-CVIET haplotype was above 90% in both years.</p> <p>Conclusion</p> <p>These retrospective findings add to the general concern on the lifespan of the combination of SP/artesunate in Mozambique. The high frequency of quintuple <it>Pfdhfr</it>/<it>Pfdhps </it>haplotypes found here as early as 2002 most likely cause ideal conditions for the development of artesunate tolerance in the <it>P. falciparum </it>populations and may even endanger the sensitivity to the second-line drug, Coartem<sup>®</sup>.</p

    Genome-Wide Compensatory Changes Accompany Drug- Selected Mutations in the Plasmodium falciparum crt Gene

    Get PDF
    Mutations in PfCRT (Plasmodium falciparum chloroquine-resistant transporter), particularly the substitution at amino acid position 76, confer chloroquine (CQ) resistance in P. falciparum. Point mutations in the homolog of the mammalian multidrug resistance gene (pfmdr1) can also modulate the levels of CQ response. Moreover, parasites with the same pfcrt and pfmdr1 alleles exhibit a wide range of drug sensitivity, suggesting that additional genes contribute to levels of CQ resistance (CQR). Reemergence of CQ sensitive parasites after cessation of CQ use indicates that changes in PfCRT are deleterious to the parasite. Some CQR parasites, however, persist in the field and grow well in culture, which may reflect adaptive changes in the parasite genome to compensate for the mutations in PfCRT. Using three isogenic clones that have different drug resistance profiles corresponding to unique mutations in the pfcrt gene (106/1K76, 106/176I, and 106/76I-352K), we investigated changes in gene expression in these parasites grown with and without CQ. We also conducted hybridizations of genomic DNA to identify copy number (CN) changes in parasite genes. RNA transcript levels from 45 genes were significantly altered in one or both mutants relative to the parent line, 106/1K76. Most of the up-regulated genes are involved in invasion, cell growth and development, signal transduction, and transport activities. Of particular interest are genes encoding proteins involved in transport and/or regulation of cytoplasmic or compartmental pH such as the V-type H+ pumping pyrophosphatase 2 (PfVP2), Ca2+/H+ antiporter VCX1, a putative drug transporter and CN changes in pfmdr1. These changes may represent adaptations to altered functionality of PfCRT, a predicted member of drug/metabolite transporter superfamily found on the parasite food vacuole (FV) membrane. Further investigation of these genes may shed light on how the parasite compensates for functional changes accompanying drug resistance mutations in a gene coding for a membrane/drug transporter

    Statement on Advancing the Assessment of Chemical Mixtures and their Risks for Human Health and the Environment

    Get PDF
    The number of anthropogenic chemicals, manufactured, by-products, metabolites and abiotically formed transformation products, counts to hundreds of thousands, at present. Thus, humans and wildlife are exposed to complex mixtures, never one chemical at a time and rarely with only one dominating effect. Hence there is an urgent need to develop strategies on how exposure to multiple hazardous chemicals and the combination of their effects can be assessed. A workshop, “Advancing the Assessment of Chemical Mixtures and their Risks for Human Health and the Environment” was organized in May 2018 together with Joint Research Center in Ispra, EU-funded research projects and Commission Services and relevant EU agencies. This forum for researchers and policy-makers was created to discuss and identify gaps in risk assessment and governance of chemical mixtures as well as to discuss state of the art science and future research needs. Based on the presentations and discussions at this workshop we want to bring forward the following Key Messages: We are at a turning point: multiple exposures and their combined effects require better management to protect public health and the environment from hazardous chemical mixtures. Regulatory initiatives should be launched to investigate the opportunities for all relevant regulatory frameworks to include prospective mixture risk assessment and consider combined exposures to (real-life) chemical mixtures to humans and wildlife, across sectors. Precautionary approaches and intermediate measures (e.g. Mixture Assessment Factor) can already be applied, although, definitive mixture risk assessments cannot be routinely conducted due to significant knowledge and data gaps. A European strategy needs to be set, through stakeholder engagement, for the governance of combined exposure to multiple chemicals and mixtures. The strategy would include research aimed at scientific advancement in mechanistic understanding and modelling techniques, as well as research to address regulatory and policy needs. Without such a clear strategy, specific objectives and common priorities, research, and policies to address mixtures will likely remain scattered and insufficient

    Overview of known plastic packaging-associated chemicals and their hazards

    No full text
    Global plastics production has reached 380 million metric tons in 2015, with around 40% used for packaging. Plastic packaging is diverse and made of multiple polymers and numerous additives, along with other components, such as adhesives or coatings. Further, packaging can contain residues from substances used during manufacturing, such as solvents, along with non-intentionally added substances (NIAS), such as impurities, oligomers, or degradation products. To characterize risks from chemicals potentially released during manufacturing, use, disposal, and/or recycling of packaging, comprehensive information on all chemicals involved is needed. Here, we present a database of Chemicals associated with Plastic Packaging (CPPdb), which includes chemicals used during manufacturing and/or present in final packaging articles. The CPPdb lists 906 chemicals likely associated with plastic packaging and 3377 substances that are possibly associated. Of the 906 chemicals likely associated with plastic packaging, 63 rank highest for human health hazards and 68 for environmental hazards according to the harmonized hazard classifications assigned by the European Chemicals Agency within the Classification, Labeling and Packaging (CLP) regulation implementing the United Nations’ Globally Harmonized System (GHS). Further, 7 of the 906 substances are classified in the European Union as persistent, bioaccumulative, and toxic (PBT), or very persistent, very bioaccumulative (vPvB), and 15 as endocrine disrupting chemicals (EDC). Thirty-four of the 906 chemicals are also recognized as EDC or potential EDC in the recent EDC report by the United Nations Environment Programme. The identified hazardous chemicals are used in plastics as monomers, intermediates, solvents, surfactants, plasticizers, stabilizers, biocides, flame retardants, accelerators, and colorants, among other functions. Our work was challenged by a lack of transparency and incompleteness of publicly available information on both the use and toxicity of numerous substances. The most hazardous chemicals identified here should be assessed in detail as potential candidates for substitution

    Mutation in the Plasmodium falciparum CRT protein determines the stereospecific activity of antimalarial cinchona alkaloids.

    Get PDF
    The Cinchona alkaloids are quinoline aminoalcohols that occur as diastereomer pairs, typified by (-)-quinine and (+)-quinidine. The potency of (+)-isomers is greater than the (-)-isomers in vitro and in vivo against Plasmodium falciparum malaria parasites. They may act by the inhibition of heme crystallization within the parasite digestive vacuole in a manner similar to chloroquine. Earlier studies showed that a K76I mutation in the digestive vacuole-associated protein, PfCRT (P. falciparum chloroquine resistance transporter), reversed the normal potency order of quinine and quinidine toward P. falciparum. To further explore PfCRT-alkaloid interactions in the malaria parasite, we measured the in vitro susceptibility of eight clonal lines of P. falciparum derived from the 106/1 strain, each containing a unique pfcrt allele, to four Cinchona stereoisomer pairs: quinine and quinidine; cinchonidine and cinchonine; hydroquinine and hydroquinidine; 9-epiquinine and 9-epiquinidine. Stereospecific potency of the Cinchona alkaloids was associated with changes in charge and hydrophobicity of mutable PfCRT amino acids. In isogenic chloroquine-resistant lines, the IC(50) ratio of (-)/(+) CA pairs correlated with side chain hydrophobicity of the position 76 residue. Second-site PfCRT mutations negated the K76I stereospecific effects: charge-change mutations C72R or Q352K/R restored potency patterns similar to the parent K76 line, while V369F increased susceptibility to the alkaloids and nullified stereospecific differences between alkaloid pairs. Interactions between key residues of the PfCRT channel/transporter with (-) and (+) alkaloids are stereospecifically determined, suggesting that PfCRT binding plays an important role in the antimalarial activity of quinine and other Cinchona alkaloids

    Novel structural CYP51 mutation in Trypanosoma cruzi associated with multidrug resistance to CYP51 inhibitors and reduced infectivity.

    No full text
    Ergosterol biosynthesis inhibitors, such as posaconazole and ravuconazole, have been proposed as drug candidates for Chagas disease, a neglected infectious tropical disease caused by the protozoan parasite Trypanosoma cruzi. To understand better the mechanism of action and resistance to these inhibitors, a clone of the T. cruzi Y strain was cultured under intermittent and increasing concentrations of ravuconazole until phenotypic stability was achieved. The ravuconazole-selected clone exhibited loss in fitness in vitro when compared to the wild-type parental clone, as observed in reduced invasion capacity and slowed population growth in both mammalian and insect stages of the parasite. In drug activity assays, the resistant clone was above 300-fold more tolerant to ravuconazole than the sensitive parental clone, when the half-maximum effective concentration (EC50) was considered. The resistant clones also showed reduced virulence in vivo, when compared to parental sensitive clones. Cross-resistance to posaconazole and other CYP51 inhibitors, but not to other antichagasic drugs that act independently of CYP51, such as benznidazole and nifurtimox, was also observed. A novel amino acid residue change, T297M, was found in the TcCYP51 gene in the resistant but not in the sensitive clones. The structural effects of the T297M, and of the previously described P355S residue changes, were modelled to understand their impact on interaction with CYP51 inhibitors
    corecore